Math 4133 - Linear Algebra

 $\begin{array}{c} \text{Homework } \#2 \\ \text{Assigned - 2011.01.26} \end{array}$

Name:	

Please answer, as fully as possible, all of the following questions. For those problems requiring *Maple*, please email me the *Maple* worksheet that goes along with the question. You do NOT have to print out the *Maple* worksheets.

- 1. Give both an algebraic and geometric explanation as to why underdetermined systems typically have an infinite number of solutions while overdetermined systems typically have no solution.
- 2. Using your answer to problem 1, construct (if possible) underdetermined and overdetermined systems that have a single solution, that is, a solution of dimension zero.
- 3. In Example 3.2.4, two elementary matrices were combined, e.g. E_7 and E_6 were replaced with one matrix, E_{76} . Explain how this process can be generalized to create modified elementary matrices which zero out all entries in a column except the diagonal entry. What Maple command does this process automatically?
- 4. Consider the following system of equations:

$$2x_1 + 3x_2 - 4x_3 + x_4 + 4x_5 = 5$$

$$-6x_1 + 7x_2 + 8x_3 - 2x_4 + 3x_5 = -2$$

$$9x_2 + 7x_3 + 8x_4 + 2x_5 = 3$$

$$-7x_1 + 3x_2 + 7x_3 + 2x_4 + 7x_5 = 0$$

- (a) Perform Gauss-Jordan elimination on the system of equations.
- (b) Write out the solutions to this system, and give the dimension of the solution and the space \mathbb{R}^n it lies in.
- (c) Write out the solutions to this system in column matrix format using scalar multiplication by the independent variables.
- 5. Given the following three systems of equations

a)
$$3x + 5y = 7$$
 b) $3x + 5y = 12$ c) $3x + 5y = -2$ $4x + 6y = 0$ $4x + 6y = 2$

- (a) Construct a matrix, which row reduced, will solve all three systems of equations simultaneously.
- (b) Solve the all three systems of equations by row reducing the matrix created in part (a).