Math 2283 - Introduction to Logic

Quiz #7 - 2008.10.09 Solutions

Consider the set $\mathbf{D} = \{0, 1, 2\}$ and define the class \mathbb{K} to be the class of all possible subsets of \mathbf{D} , explicitly given as

$$\mathbb{K} = \{\{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{\}\} .$$

We now define the relation \subseteq for two elements x, y of the class \mathbb{K} by:

$$x \subseteq y \leftrightarrow (x \subset y) \lor (x = y).$$

Note: This relation is very similar to the relation of inclusion, however we now have the added property of possible equality.

Determine which of the properties: reflexive, irreflexive, symmetric, asymmetric, transitive and connected, the relation \subseteq has with respect to the class \mathbb{K} .

First we check reflexive: $\mathbf{A}_{x} x \subseteq x$. This is true since $\mathbf{A}_{x} x = x$.

Next up is irreflexive: $\mathbf{A}_{x} x \not\subseteq x$. This is false since $\mathbf{A}_{x} x = x$.

Symmetric: $\mathbf{A}_{x,y} x \subseteq y \to y \subseteq x$. This is false, consider $x = \{1\}$ and $y = \{0,1\}$.

Asymmetric: $\mathbf{A}_{x,y} \ x \subseteq y \to y \not\subseteq x$. This is false, consider y = x.

Transitive: $\mathbf{A}_{x,y,z}$ $(x \subseteq y \land y \subseteq z) \rightarrow x \subseteq z$. This is true since $x \subseteq y$ implies everything that is in x is also in y, and $y \subseteq z$ implies that everything in y is also in z. Therefore, all of x must also be in z giving us $x \subseteq z$.

Connected: $\mathbf{A}_{x,y}$ $(x \neq y) \land (x \subseteq y \lor y \subseteq x)$. This is false, consider $x = \{0,2\}$ and $y = \{0,1\}$.