Math 2315 - Calculus II

Homework #3 - 2007.09.02 Due Date - 2007.09.12 Solutions

Part 1: Problems from sections 7.5. Section 7.5:

31.

$$\int \sqrt{\frac{1+x}{1-x}} dx$$

First, we do some algebraic manipulation:

$$\int \sqrt{\frac{1+x}{1-x}} dx = \int \sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}} dx$$

$$= \int \frac{1+x}{\sqrt{1-x^2}} dx$$

$$= \int \frac{1}{\sqrt{1-x^2}} dx + \int \frac{x}{\sqrt{1-x^2}} dx$$

$$= \sin^{-1}(x) - \sqrt{1-x^2} + C.$$

65.

$$\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$$

This one looks complicated, but is rather simple if you multiply top and bottom by the quantity $\sqrt{x+1} - \sqrt{x}$. This gives

$$\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx = \int \sqrt{x+1} - \sqrt{x} dx.$$

This integral is very straightforward, so we get

$$\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx = \frac{2}{3} (x+1)^{\frac{3}{2}} - \frac{2}{3} x^{\frac{3}{2}} + G.$$

Part 2: The fun problems.

1. Solve the following two hyperbolic integrals using a similar method to trigonometric integration.

a)
$$\int \sinh^4(x) \cosh^5(x) dx$$

We first remember that $\cosh^2(x) = 1 + \sinh^2(x)$. Since $\cosh(x)$ is raised to an odd power we rewrite the integral as

$$\int \sinh^4(x) \cosh^5(x) dx = \int \sinh^4(x) \left(\sinh^2(x) + 1\right)^2 \cosh(x) dx.$$

Now we let $u = \sinh(x)$ and $du = \cosh(x)dx$. This gives

$$\int \sinh^4(x) \left(\sinh^2(x) + 1\right)^2 \cosh(x) dx = \int u^4 \left(u^2 + 1\right)^2 du$$

$$= \int u^8 + 2u^6 + u^4 du$$

$$= \frac{1}{9}u^9 + \frac{2}{7}u^7 + \frac{1}{5}u^5 + S.$$

Substituting back $u = \sinh(x)$, our final answer is

$$\int \sinh^4(x)\cosh^5(x)dx = \frac{1}{9}\sinh^9(x) + \frac{2}{7}\sinh^7(x) + \frac{1}{5}\sinh^5(x) + S.$$

b)
$$\int \cosh^2(x)dx$$

Here we use the identity $\cosh^2(x) = \frac{1}{2}(\cosh(2x) + 1)$ to get

$$\int \cosh^2(x)dx = \frac{1}{2} \int \cosh(2x) + 1dx$$
$$\frac{1}{2} \left(\frac{1}{2}\sinh(2x) + x\right) + R.$$

2. Suppose that Q(x) = (x - a)(x - b), where $a \neq b$ and let $\frac{P(x)}{Q(x)}$ be a proper rational function so that P(x) = A = B

$$\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b}.$$

Show that

$$A = \frac{P(a)}{Q'(a)}$$
 and $B = \frac{P(b)}{Q'(b)}$.

First, let us do some side calculations:

$$Q'(x) = (x - b) + (x - a), \quad Q'(a) = a - b, \quad Q'(b) = b - a.$$

Now, we start with the equation

$$\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b},$$

and take a derivative on both sides. This gives

$$\frac{P'(x)Q(x) - P(x)Q'(x)}{Q^2(x)} = -\frac{A}{(x-a)^2} - \frac{B}{(x-b)^2}.$$

Multiplying both sides by -1 gives

$$\frac{P(x)Q'(x) - P'(x)Q(x)}{Q^2(x)} = \frac{A}{(x-a)^2} + \frac{B}{(x-b)^2}.$$

Next, we multiply both sides by $Q^2(x)$:

$$P(x)Q'(x) - P'(x)Q(x) = Q^{2}(x)\left(\frac{A}{(x-a)^{2}} + \frac{B}{(x-b)^{2}}\right).$$

Now, we will plug in x = a. It is important to remember that Q(a) = (a-a)(a-b). So we have

$$P(a)Q'(a) - P'(a)Q(a) = Q^{2}(a)\frac{A}{(a-a)^{2}} + Q^{2}(a)\frac{B}{(a-b)^{2}},$$

and the second term on the left goes to zero, as does the second term on the right. So we now have

$$P(a)Q'(a) = Q^{2}(a)\frac{A}{(a-a)^{2}}.$$

Here, we simplify the right hand side some more.

$$Q^{2}(a)\frac{A}{(a-a)^{2}} = (a-a)^{2}(a-b)^{2}\frac{A}{(a-a)^{2}} = A(a-b)^{2}.$$

Solving for A gives

$$\frac{P(a)Q'(a)}{(a-b)^2} = A.$$

However, Q'(a) = (a - b), so $(a - b)^2 = (Q'(a))^2$. This implies that

$$\frac{P(a)Q'(a)}{(Q'(a))^2} = A,$$

and solving for A gives

$$A = \frac{P(a)}{Q'(a)}.$$

Now, we will plug in x = b. It is important to remember that Q(b) = (b-a)(b-b). So we have

$$P(b)Q'(b) - P'(b)Q(b) = Q^{2}(b)\frac{A}{(b-a)^{2}} + Q^{2}(b)\frac{B}{(b-b)^{2}},$$

and the second term on the left goes to zero, as does the first term on the right. So we now have

$$P(b)Q'(b) = Q^2(b)\frac{B}{(b-b)^2}.$$

Here, we simplify the right hand side some more.

$$Q^{2}(b)\frac{B}{(b-b)^{2}} = (b-a)^{2}(b-b)^{2}\frac{B}{(b-b)^{2}} = B(b-a)^{2}.$$

Solving for B gives

$$\frac{P(b)Q'(b)}{(b-a)^2} = B.$$

However, Q'(b) = (b-a), so $(b-a)^2 = (Q'(b))^2$. This implies that

$$\frac{P(b)Q'(b)}{(Q'(b))^2} = B,$$

and solving for B gives

$$B = \frac{P(b)}{Q'(b)}.$$

3. Let us now try to generalize problem 2 a little bit. Suppose that

$$Q(x) = (x - a_1)(x - a_2) \cdots (x - a_n) = \prod_{k=1}^{n} (x - a_k),$$

where $a_i \neq a_j$ for $1 \leq i, j, \leq n$. Let $\frac{P(x)}{Q(x)}$ be a proper rational function so that

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_n}{x - a_n} = \sum_{k=1}^n \frac{A_k}{x - a_k}.$$

The goal of this problem is to show that $A_j = \frac{P(a_j)}{Q'(a_j)}$. To make this a little easier, we will break it up a little bit. For the rest of this problem, we will thus assume that $Q(x) = \prod_{k=1}^{n} (x - a_k)$, as already stated.

a) Show that

$$Q'(x) = Q(x) \cdot \sum_{k=1}^{n} \frac{1}{x - a_k}.$$

So, first we start with

$$Q'(x) = \frac{d}{dx} \left((x - a_1)(x - a_2) \cdots (x - a_n) \right).$$

To compute the right hand side, we would have to use the product rule n times. For the kth term in the product rule derivative, the kth term vanishes. So we end up with something as follows:

$$Q'(x) = (x - a_2)(x - a_3) \cdots (x - a_n) + (x - a_1)(x - a_3) \cdots (x - a_n) + \dots + (x - a_1)(x - a_2) \cdots (x - a_{n-1}).$$

Notice that the first term on the right can be rewritten as $\frac{Q(x)}{x-a_1}$, and following this pattern, we get

$$Q'(x) = \frac{Q(x)}{x - a_1} + \frac{Q(x)}{x - a_2} + \dots + \frac{Q(x)}{x - a_n}$$

$$= Q(x) \left(\frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_n} \right)$$

$$= Q(x) \cdot \sum_{k=1}^{n} \frac{1}{x - a_k}.$$

b) Using part a) show that

$$Q'(a_j) = \prod_{k=1, k \neq j}^{n} (a_j - a_k)$$

So we start with the answer to part a) and let $x = a_i$.

$$Q'(a_j) = Q(a_j) \cdot \sum_{k=1}^{n} \frac{1}{a_j - a_k}.$$

Notice that we have

$$\frac{Q(a_j)}{a_j - a_k} = 0$$

if $j \neq k$. When k = j, the $a_j - a_j$ term in $Q(a_j)$ cancels the $a_j - a_j$ term in the numerator. Thus

$$Q'(a_j) = Q(a_j) \cdot \sum_{k=1, k \neq j}^{n} \frac{1}{a_j - a_k} + \frac{Q(a_j)}{a_j - a_j}$$

$$= 0 + \frac{Q(a_j)}{a_j - a_j}$$

$$= \left(\prod_{k=1}^{n} (a_j - a_k)\right) \frac{1}{a_j - a_j}$$

$$= \prod_{k=1, k \neq j}^{n} (a_j - a_k).$$

c) From the definition of Q(x) and parts a) and b), show that

$$Q^{2}(a_{j}) \cdot \sum_{k=1}^{n} \frac{A_{k}}{(a_{j} - a_{k})^{2}} = (Q'(a_{j}))^{2} A_{j}.$$

We start with the left hand side, and show it is equal to the right hand side.

$$Q^{2}(a_{j}) \cdot \sum_{k=1}^{n} \frac{A_{k}}{(a_{j} - a_{k})^{2}} = \prod_{r=1}^{n} (a_{j} - a_{r})^{2} \cdot \sum_{k=1}^{n} \frac{A_{k}}{(a_{j} - a_{k})^{2}}$$

Now we expand the right hand side:

$$= \prod_{r=1}^{n} (a_j - a_r)^2 \cdot \left[\frac{A_1}{(a_j - a_1)^2} + \ldots + \frac{A_j}{(a_j - a_j)^2} + \ldots + \frac{A_n}{(a_j - a_n)^2} \right],$$

and then

$$= \left(\prod_{r=1,r\neq j}^{n} (a_j - a_k)^2\right) \cdot (a_j - a_j)^2 \cdot \left[\frac{A_1}{(a_j - a_1)^2} + \dots + \frac{A_j}{(a_j - a_j)^2} + \dots + \frac{A_n}{(a_j - a_n)^2}\right],$$

$$= \left(\prod_{r=1,r\neq j}^{n} (a_j - a_k)^2\right) \cdot \sum_{k=1}^{n} \frac{(a_j - a_j)^2}{(a_j - a_k)^2} A_k.$$

Now, if we take a closer look at that sum, we will notice that

$$\sum_{k=1}^{n} \frac{(a_j - a_j)^2}{(a_j - a_k)^2} A_k = A_j$$

since if j = k, the fraction becomes 1, otherwise it is 0. So now we have

$$\left(\prod_{r=1,r\neq j}^{n} (a_j - a_k)^2\right) \cdot \sum_{k=1}^{n} \frac{(a_j - a_j)^2}{(a_j - a_k)^2} A_k = A_j \left(\prod_{r=1,r\neq j}^{n} (a_j - a_k)^2\right).$$

Putting this together, we now have

$$Q^{2}(a_{j}) \cdot \sum_{k=1}^{n} \frac{A_{k}}{(a_{j} - a_{k})^{2}} = A_{j} \left(\prod_{r=1, r \neq j}^{n} (a_{j} - a_{k})^{2} \right),$$

but the product on the left hand side is simply $(Q'(a_j))^2$ (simply square the equation form part b)). So now

$$Q^{2}(a_{j}) \cdot \sum_{k=1}^{n} \frac{A_{k}}{(a_{j} - a_{k})^{2}} = (Q'(a_{j}))^{2} A_{j}.$$

d) Using parts a)-c) and your method of proving problem 2), show that

$$A_j = \frac{P(a_j)}{Q'(a_j)}.$$

So we start with

$$\frac{P(x)}{Q(x)} = \sum_{k=1}^{n} \frac{A_k}{x - a_k},$$

and take a derivative of both sides:

$$\frac{P'(x)Q(x) - P(x)Q'(x)}{Q^2(x)} = -\sum_{k=1}^n \frac{A_k}{(x - a_k)^2}.$$

We rewrite to get rid of the negative sign:

$$\frac{P(x)Q'(x) - P'(x)Q(x)}{Q^2(x)} = \sum_{k=1}^{n} \frac{A_k}{(x - a_k)^2},$$

and then multiply both sides by $Q^2(x)$:

$$P(x)Q'(x) - P'(x)Q(x) = Q^{2}(x)\sum_{k=1}^{n} \frac{A_{k}}{(x - a_{k})^{2}}.$$

Next, we plug in $x = a_j$:

$$P(a_j)Q'(a_j) - P'(a_j)Q(a_j) = Q^2(a_j)\sum_{k=1}^n \frac{A_k}{(a_j - a_k)^2}.$$

By part c), the right hand side is simply $A_j(Q'(a_j))^2$, so

$$P(a_j)Q'(a_j) - P'(a_j)Q(a_j) = A_j(Q'(a_j))^2$$

and since $Q(a_j)$ for any j, we have

$$P(a_j)Q'(a_j) = A_j(Q'(a_j))^2.$$

Solving for A_j gives

$$A_j = \frac{P(a_j)}{Q'(a_j)}.$$