Math 3113 - Multivariable Calculus

Homework #4 - 2008.02.06 Due Date - 2008.02.13 Solutions

Find an equation of the form $r = f(\theta, z)$ in cylindrical coordinates for the following surfaces.

1.
$$x^2 + y^2 + z^2 = 4$$

$$x^{2} + y^{2} + z^{2} = 4$$
$$r^{2} + z^{2} = 4$$

Solving for r gives

$$r = \sqrt{4 - z^2}.$$

2.
$$x^2 - y^2 = 4$$

$$x^{2} - y^{2} = 4$$

$$r^{2} \cos^{2}(\theta) - r^{2} \sin^{2}(\theta) = 4$$

$$r^{2} \left(\cos^{2}(\theta) - \sin^{2}(\theta)\right) = 4$$

Solving for r gives

$$r = \frac{2}{\sqrt{\cos^2(\theta) - \sin^2(\theta)}} = \frac{2}{\sqrt{\cos(2\theta)}}.$$

3. z = 3xy

$$z = 3xy$$
$$z = 3r^2 \cos(\theta) \sin(\theta)$$

Solving for r gives

$$r = \sqrt{\frac{z}{3\cos(\theta)\sin(\theta)}} = \sqrt{\frac{2z}{3\sin(2\theta)}}.$$

Find an equation of the form $\rho = f(\theta, \phi)$ in spherical coordinates for the following surfaces.

4.
$$z = 2$$

z = 2 $\rho \cos(\phi) = 2$

Solving for ρ gives

 $\rho = \frac{2}{\cos(\phi)}.$

5. $x = z^2$

$$x = z^{2}$$

$$\rho \cos(\theta) \sin(\phi) = \rho^{2} \cos^{2}(\phi)$$

$$\cos(\theta) \sin(\phi) = \rho \cos^{2}(\phi)$$

Solving for ρ gives

$$\rho = \frac{\cos(\theta)\tan(\phi)}{\cos(\phi)}.$$

6.
$$x^2 - y^2 = 4$$

$$x^{2} - y^{2} = 4$$

$$\rho^{2} \sin^{2}(\phi) \cos^{2}(\theta) - \rho^{2} \sin^{2}(\phi) \sin^{2}(\theta) = 4$$

$$\rho^{2} \sin^{2}(\phi) \left(\cos^{2}(\theta) - \sin^{2}(\theta)\right) = 4$$

$$\rho^{2} \sin^{2}(\phi) \cos(2\theta) = 4$$

Solving for ρ gives

$$\rho = \frac{2}{\sin(\phi)} \frac{1}{\sqrt{\cos(2\theta)}}.$$

Sketch the graphs of the following sets of points in spherical coordinates.

7.
$$\rho = 8$$
, $0 \le \theta \le 2\pi$, $0 \le \phi \le \frac{\pi}{2}$

This is the upper half sphere of radius 8.

4

8.
$$\theta = \frac{2\pi}{3}$$
, $0 \le \rho \le 4$, $0 \le \phi \le \pi$

This is the disc of radius 4 centered on the z-axis which forms an angle of $\theta = \frac{2\pi}{3}$ in the xy-plane.

9.
$$\phi = \frac{\pi}{6}$$
, $0 \le \rho \le 2$, $\frac{3\pi}{2} \le \theta \le 2\pi$

This is $\frac{1}{4}$ portion of the upper cone located in the octant with negative y and positive x coordinates.

Sketch the graphs of the following sets of points in cylindrical coordinates.

$$10. \ r=4, \quad 0 \leq \theta \leq \pi, \quad 0 \leq z \leq 4$$

This is half a cylinder of radius 4 with positive y-coordinates and height 4 starting in the xy-plane.

11.
$$\theta = \frac{\pi}{3}$$
, $0 \le r \le 5$, $-4 \le z \le 0$

This is a plane of height 4 starting at z=-4 which is 5 units long and forms an angle of $\theta=\frac{\pi}{3}$ with the xy-plane.

12.
$$z = -2$$
, $0 \le r \le 5$, $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$

This is a half disc of radius 5 located 5 units below the xy-plane with negative x-coordinates.

