Math 3113 - Multivariable Calculus

Homework #6 - 2006.03.23 Due Date - 2006.03.29 Solutions

- 1. Sketch a contour map of each of the following functions.
 - a) f(x,y) = 1 |x| |y|

b) $f(x,y) = 4x^2 + y^2$

c)
$$f(x,y) = x^2 - 4y^2$$

d)
$$f(x,y) = \ln(\sqrt{x^2 + y^2} + 1)$$

2. Consider the function

$$f(x,y) = \frac{x^2(x+y)}{x^4 + (x+y)^2}.$$

a) Show that $f(x,y) \to 0$ as $(x,y) \to (0,0)$ for all curves of the form $y = ax^k$ for $k \ge 1$.

By setting $y = ax^k$, we have the following limit:

$$\lim_{x \to 0} \frac{x^2(x + ax^k)}{x^4 + (x + ax^k)^2}.$$

Factoring an x^3 out of the numerator, and an x^2 out of the denominator gives

$$\lim_{x \to 0} \frac{x^2(x + ax^k)}{x^4 + (x + ax^k)^2} = \lim_{x \to 0} \frac{x^3 \left(1 + ax^{k-1}\right)}{x^2 \left(x^2 + \left(1 + ax^{k-1}\right)^2\right)} = \lim_{x \to 0} \frac{x \left(1 + ax^{k-1}\right)}{x^2 + \left(1 + ax^{k-1}\right)^2}$$

Since $k \ge 1$, one has that $\lim_{x\to 0} x^{k-1} = 0$, and therefore

$$\lim_{x \to 0} \frac{x\left(1 + ax^{k-1}\right)}{x^2 + \left(1 + ax^{k-1}\right)^2} = \frac{0}{1} = 0.$$

b) Show that $f(x,y) \to 0$ as $(x,y) \to (0,0)$ for all curves of the form $x = ay^k$ for $k \ge 1$.

By setting $x = ay^k$, we have the following limit:

$$\lim_{y \to 0} \frac{(ay^k)^2 (ay^k + y)}{(ay^k)^4 + (ay^k + y)^2}.$$

Factoring a y^3 out of the numerator, and a y^2 out of the denominator gives

$$\lim_{y \to 0} \frac{\left(ay^k\right)^2 \left(ay^k + y\right)}{\left(ay^k\right)^4 + \left(ay^k + y\right)^2} = \lim_{y \to 0} \frac{y^3 \left(a^3 y^{3(k-1)} + a^2 y^{2(k-1)}\right)}{y^2 \left(a^4 y^{4k-2} + a^2 y^{2(k-1)} + ay^{k-1} + 1\right)} = \lim_{y \to 0} \frac{y \left(a^3 y^{3(k-1)} + a^2 y^{2(k-1)}\right)}{a^4 y^{4k-2} + a^2 y^{2(k-1)} + ay^{k-1} + 1}.$$

Using similar arguments to part a), one arrives at the same answer of

$$\lim_{y \to 0} \frac{y \left(a^3 y^{3(k-1)} + a^2 y^{2(k-1)}\right)}{a^4 y^{4k-2} + a^2 y^{2(k-1)} + a y^{k-1} + 1} = \frac{0}{1} = 0.$$

c) Show that $f(x,y) \to \frac{1}{2}$ as $(x,y) \to (0,0)$ along the curve $y = x^2 - x$.

Here we have

$$\lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

3. Notice that the following two expressions are equivalent:

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(x,y)\to(0,0)} f(x+a,y+b)$$

Since it is easier to work with curves through the origin, in limits where $(a, b) \neq (0, 0)$ and the limit is not obvious, one can replace x by x + a and y by y + b and let $(x, y) \rightarrow (0, 0)$.

Consider the following limit:

$$\lim_{(x,y)\to(1,0)} \frac{4(x-1)^4(y+1)+4y^2}{(x-1)^4+y^2}.$$

a) Rewrite the above limit so that the limit goes through the origin instead of through the point (1,0).

$$\lim_{(x,y)\to(1,0)}\frac{4(x-1)^4(y+1)+4y^2}{(x-1)^4+y^2}=\lim_{(x,y)\to(0,0)}\frac{4x^4(y+1)+4y^2}{x^4+y^2}.$$

b) Using the STRICT definition of the limit, show that the limit in part a) is equal to 4. We require that

$$\left| \frac{4x^4(y+1) + 4y^2}{x^4 + y^2} - 4 \right| \le \varepsilon$$

whenever

$$\sqrt{x^2 + y^2} \le \delta.$$

Notice that

$$\left| \frac{4x^4(y+1) + 4y^2}{x^4 + y^2} - 4 \right| = \left| 4\frac{x^4y}{x^4 + y^2} \right|.$$

Since $y^2 \ge 0$, one has that

$$\left|\frac{x^4y}{x^4+y^2}\right| \leq |y| \left|\frac{x^4+y^2}{x^4+y^2}\right| = |y| \ .$$

Thus,

$$\left| 4 \frac{x^4 y}{x^4 + y^2} \right| \le 4 \left| y \right| = 4 \sqrt{y^2} \le 4 \sqrt{x^2 + y^2}.$$

So if $\delta = \frac{\varepsilon}{4}$, one has that

$$\left| \frac{4x^4(y+1) + 4y^2}{x^4 + y^2} - 4 \right| \le \varepsilon$$

whenever

$$\sqrt{x^2+y^2} \le \delta = \frac{\varepsilon}{4}.$$

c) What value does δ have to be smaller than if $\varepsilon=\frac{1}{25}?$ From part b), $\delta\leq\frac{1}{100}.$