Math 2013 - Introduction to Discrete Mathematics
Exam #1 - 2015.09.24 Solutions
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1. Using the perturbation method, evaluate Z ok
k=0

There are several ways to solve this, but we must use the perturbation method. If we define the partial sum .S,, as

follows:
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Note that the first term on the right is zero, so
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Letting £ = k 4+ 1 in the right hand side of the above gives
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Solving for S,, in the last line above gives

1 “1 n+1
QS" = Z ok+1 - on+1
k=0

Now, the sum on the right hand side is a geometric series, which has a closed form:
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Substituting this into the previous equation gives
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Solving for S,, gives (with a little algebraic manipulation):
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2. Solve the following recurrence relation:

Ty, =1
Tn = %Tnfl + %1)'

(n

Following the method in Section 2.2, we set a, = 1 and b,, = % and look for the multiplicative factor s,, to allow for
a substitution. Thus
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Thus, since s, = n - s,_1, we have s, = n!. Multiplying both sides of the recurrence relation equation by s,, gives

n!T,=mn—-1)T,1+n
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Setting S, = n!T,, gives

Similarly, letting n = n — 1, we have

Thus
Sp=8n_2+n+(n—1)

We can conclude then that
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The closed form for the sum of the first n integers is M, SO
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Substituting this in to the formula S, = n!T,, gives
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3. Remember in your homework (and in class), we solved the system

R() =
R, =Rn,1+(-1)" (6 +ny+ n25)

With the solution being
R, = A(n)a+ B(n)B + C(n)y + D(n)d,

where
Amy=1, B =" )= (-0t ()" D)= (-

Use this to solve the summation Z (—1)% (3 — 4k?).
k=0
The first thing we do is convert to a recurrence relation:

Ry =3
R, =Ry 1+ (—1)" (3 dn?)
Soa=p=3,7=0, and § = —4, and as a result,
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4. Perform the following matrix multiplication:

1 4 3
2 5 2
3 41



