Math 2215 - Calculus 1
Exam #1 - 2016.08.29
Solutions

1. Compute the following limit:
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2. Compute the following limit:
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If we plug in 3, we get something nonzero over something zero. Thus, the limit will be +00. To determine which,
we plug in values close to 3 but slightly less than 3. Note that near x = 3, the numerator will always be positive, so

it is sufficient to look at the denominator. The signs of the terms in the denominator are +, +, + (due to the square
on the (x — 3) term), and +. Thus, we can conclude that
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= 4-00.

3. Compute the following limit:
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4. Compute the following limit:
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5. State the algebraic definition of a function f(x) being continuous at the point z = a.

The function f(z) is continuous at z = a if

lim f(x) = f(a).
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6. Find the value of a for which the following function is continuous everywhere.
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Clearly the function is continuous for all z # 0, so we simply need to make sure that f(z) is continuous at x = 0.
Using the definition of continuity from the previous problem, we have that f(0) = 1, and
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as well as,
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For the limit to exist, the limit from the left must equal the limit from the right. Thus 1 = 3 —a or a = 2. Fur-
thermore, the limit from the left and from the right equal the function value, therefore, if a = 2, the function is
continuous at x = 0, and therefore continuous everywhere.

7. Compute the following limit:
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8. Compute the following limit:
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Since x — 0T, this means x > 0, therefore
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