Math 1613 - Trigonometry Quiz #11 - 2018.09.24 Solutions

Find the exact values of s on the interval $[0, 2\pi)$ satisfying the condition $\sin^3(s) = -\frac{1}{8}$.

So we need to solve $\sin^3(s) = -\frac{1}{8}$, which we can rewrite as $\sin(s) = -\frac{1}{2}$ after taking a cube root of both sides. Note that $\sin(s)$ is negative in quadrants III and IV, so we solve $\sin(s) = \frac{1}{2}$ in quadrant I and adjust. In quadrant I, $\sin(\pi/6) = \frac{1}{2}$, so our reference angle is $s = \frac{\pi}{6}$. Thus, in quadrant IV, this would be $2\pi - \pi/6 = \frac{11}{6}\pi$. In quadrant III, we have $\pi + \pi/6 = \frac{7}{6}\pi$.