Math 2315 - Calculus 2

Final Exam - 2021.05.03

Name: _____

$$\sin^2(t) + \cos^2(t) = 1, \quad 1 + \cot^2(t) = \csc^2(t), \quad \tan^2(t) + 1 = \sec^2(t)$$
$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k, \quad \sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin(\theta)$	$\sqrt{\frac{0}{4}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{4}{4}}$	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{0}{4}}$
$\cos(\theta)$	$\sqrt{\frac{4}{4}}$	$\sqrt{\frac{3}{4}}$	$\sqrt{\frac{2}{4}}$	$\sqrt{\frac{1}{4}}$	$\sqrt{\frac{0}{4}}$	$-\sqrt{\frac{1}{4}}$	$-\sqrt{\frac{2}{4}}$	$-\sqrt{\frac{3}{4}}$	$-\sqrt{\frac{4}{4}}$

1. Compute the following integrals.

(a)
$$\int \frac{3x+2}{\sqrt{1-x^2}} \, \mathrm{d}x$$

(b)
$$\int \cot^3(t) \csc^2(t) dt$$

(c)
$$\int \frac{-2w+4}{(w^2+1)(w-1)^2} \, \mathrm{d}w$$

(d)
$$\int \frac{1}{(4-z^2)^{3/2}} dz$$

(d)
$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^2 - 1}} \, \mathrm{d}x$$

2. Determine whether the following series converge or diverge:

(a)
$$\sum_{k=1}^{\infty} \frac{e^k}{1 + e^{2k}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(d)
$$\sum_{k=1}^{\infty} \frac{\ln(n)}{n - \ln(n)}$$

3. Find all values of x for which the following series converge:

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{3^n} (x+2)^n$$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k 2^k} (x+2)^k$$

- 4. Find the Maclaurin Series for $F(x) = x^2 \sin(x)$ by starting with the Maclaurin series for $\sin(x)$.
- 5. Use the Maclaurin Series for e^x to compute the following limit: $\lim_{x\to\infty} x^2 \left(e^{-1/x^2}-1\right)$.
- 6. Consider the parametric equation $(x(t), y(t)) = (\cos^3(t), \sin^3(t))$ for $t \in [0, 2\pi]$.
 - (a) Sketch a graph of the curve for $t \in [0, 2\pi]$. Note: This is NOT a circle or ellipse.
 - (b) Compute the slope of the tangent line to the curve as $t \to \frac{\pi}{2}$.
 - (c) Compute the slope of the tangent line to the curve as $t \to \frac{\pi}{2}^+$.
 - (d) Be sure that your results from parts (b) and (c) agree with your sketch from part (a).
- 7. Verify that the polar function $r = f(\theta) = -\frac{4}{\cos(\theta)}$ is the vertical line x = -4.
- 8. Consider the polar function $r = f(\theta) = \frac{1}{2} + \sin(\theta)$.
 - (a) Sketch $f(\theta)$ in the xy-plane.
 - (b) Compute $\frac{dy}{dx}$ when $\theta = \frac{\pi}{6}$.